![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfsb | Structured version Visualization version GIF version |
Description: If 𝑧 is not free in 𝜑, it is not free in [𝑦 / 𝑥]𝜑 when 𝑦 and 𝑧 are distinct. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfsb.1 | ⊢ Ⅎ𝑧𝜑 |
Ref | Expression |
---|---|
nfsb | ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axc16nf 2175 | . 2 ⊢ (∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧[𝑦 / 𝑥]𝜑) | |
2 | nfsb.1 | . . 3 ⊢ Ⅎ𝑧𝜑 | |
3 | 2 | nfsb4 2418 | . 2 ⊢ (¬ ∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧[𝑦 / 𝑥]𝜑) |
4 | 1, 3 | pm2.61i 176 | 1 ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ∀wal 1521 Ⅎwnf 1748 [wsb 1937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 |
This theorem is referenced by: hbsb 2469 sb10f 2484 2sb8e 2495 sb8eu 2532 2mo 2580 cbvralf 3195 cbvreu 3199 cbvralsv 3212 cbvrexsv 3213 cbvrab 3229 cbvreucsf 3600 cbvrabcsf 3601 cbvopab1 4756 cbvmptf 4781 cbvmpt 4782 ralxpf 5301 cbviota 5894 sb8iota 5896 cbvriota 6661 dfoprab4f 7270 mo5f 29452 ax11-pm2 32948 2sb5nd 39093 |
Copyright terms: Public domain | W3C validator |