Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfsab1 Structured version   Visualization version   GIF version

Theorem nfsab1 2641
 Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
nfsab1 𝑥 𝑦 ∈ {𝑥𝜑}
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem nfsab1
StepHypRef Expression
1 hbab1 2640 . 2 (𝑦 ∈ {𝑥𝜑} → ∀𝑥 𝑦 ∈ {𝑥𝜑})
21nf5i 2064 1 𝑥 𝑦 ∈ {𝑥𝜑}
 Colors of variables: wff setvar class Syntax hints:  Ⅎwnf 1748   ∈ wcel 2030  {cab 2637 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-10 2059  ax-12 2087  ax-13 2282 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638 This theorem is referenced by:  clelab  2777  nfab1  2795  ralab2  3404  rexab2  3406  eluniab  4479  elintab  4519  opabex3d  7187  opabex3  7188  setindtrs  37909  rababg  38196
 Copyright terms: Public domain W3C validator