Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfreud Structured version   Visualization version   GIF version

Theorem nfreud 3250
 Description: Deduction version of nfreu 3252. (Contributed by NM, 15-Feb-2013.) (Revised by Mario Carneiro, 8-Oct-2016.)
Hypotheses
Ref Expression
nfreud.1 𝑦𝜑
nfreud.2 (𝜑𝑥𝐴)
nfreud.3 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfreud (𝜑 → Ⅎ𝑥∃!𝑦𝐴 𝜓)

Proof of Theorem nfreud
StepHypRef Expression
1 df-reu 3057 . 2 (∃!𝑦𝐴 𝜓 ↔ ∃!𝑦(𝑦𝐴𝜓))
2 nfreud.1 . . 3 𝑦𝜑
3 nfcvf 2926 . . . . . 6 (¬ ∀𝑥 𝑥 = 𝑦𝑥𝑦)
43adantl 473 . . . . 5 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → 𝑥𝑦)
5 nfreud.2 . . . . . 6 (𝜑𝑥𝐴)
65adantr 472 . . . . 5 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → 𝑥𝐴)
74, 6nfeld 2911 . . . 4 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥 𝑦𝐴)
8 nfreud.3 . . . . 5 (𝜑 → Ⅎ𝑥𝜓)
98adantr 472 . . . 4 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓)
107, 9nfand 1975 . . 3 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥(𝑦𝐴𝜓))
112, 10nfeud2 2619 . 2 (𝜑 → Ⅎ𝑥∃!𝑦(𝑦𝐴𝜓))
121, 11nfxfrd 1929 1 (𝜑 → Ⅎ𝑥∃!𝑦𝐴 𝜓)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383  ∀wal 1630  Ⅎwnf 1857   ∈ wcel 2139  ∃!weu 2607  Ⅎwnfc 2889  ∃!wreu 3052 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1635  df-ex 1854  df-nf 1859  df-eu 2611  df-cleq 2753  df-clel 2756  df-nfc 2891  df-reu 3057 This theorem is referenced by:  nfreu  3252
 Copyright terms: Public domain W3C validator