![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfreu1 | Structured version Visualization version GIF version |
Description: The setvar 𝑥 is not free in ∃!𝑥 ∈ 𝐴𝜑. (Contributed by NM, 19-Mar-1997.) |
Ref | Expression |
---|---|
nfreu1 | ⊢ Ⅎ𝑥∃!𝑥 ∈ 𝐴 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-reu 3021 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | nfeu1 2581 | . 2 ⊢ Ⅎ𝑥∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) | |
3 | 1, 2 | nfxfr 1892 | 1 ⊢ Ⅎ𝑥∃!𝑥 ∈ 𝐴 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 Ⅎwnf 1821 ∈ wcel 2103 ∃!weu 2571 ∃!wreu 3016 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-10 2132 ax-11 2147 ax-12 2160 |
This theorem depends on definitions: df-bi 197 df-or 384 df-ex 1818 df-nf 1823 df-eu 2575 df-reu 3021 |
This theorem is referenced by: riota2df 6746 2reu8 41615 iccpartdisj 41800 |
Copyright terms: Public domain | W3C validator |