![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfres | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for restriction. (Contributed by NM, 15-Sep-2003.) (Revised by David Abernethy, 19-Jun-2012.) |
Ref | Expression |
---|---|
nfres.1 | ⊢ Ⅎ𝑥𝐴 |
nfres.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfres | ⊢ Ⅎ𝑥(𝐴 ↾ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 5155 | . 2 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
2 | nfres.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
3 | nfres.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
4 | nfcv 2793 | . . . 4 ⊢ Ⅎ𝑥V | |
5 | 3, 4 | nfxp 5176 | . . 3 ⊢ Ⅎ𝑥(𝐵 × V) |
6 | 2, 5 | nfin 3853 | . 2 ⊢ Ⅎ𝑥(𝐴 ∩ (𝐵 × V)) |
7 | 1, 6 | nfcxfr 2791 | 1 ⊢ Ⅎ𝑥(𝐴 ↾ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2780 Vcvv 3231 ∩ cin 3606 × cxp 5141 ↾ cres 5145 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-rab 2950 df-in 3614 df-opab 4746 df-xp 5149 df-res 5155 |
This theorem is referenced by: nfima 5509 nfwrecs 7454 frsucmpt 7578 frsucmptn 7579 nfoi 8460 prdsdsf 22219 prdsxmet 22221 limciun 23703 bnj1446 31239 bnj1447 31240 bnj1448 31241 bnj1466 31247 bnj1467 31248 bnj1519 31259 bnj1520 31260 bnj1529 31264 trpredlem1 31851 trpredrec 31862 nffrecs 31903 nosupbnd2 31987 wessf1ornlem 39685 feqresmptf 39747 limcperiod 40178 xlimconst2 40379 cncfiooicclem1 40424 stoweidlem28 40563 nfdfat 41531 setrec2lem2 42766 setrec2 42767 |
Copyright terms: Public domain | W3C validator |