![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfre1 | Structured version Visualization version GIF version |
Description: The setvar 𝑥 is not free in ∃𝑥 ∈ 𝐴𝜑. (Contributed by NM, 19-Mar-1997.) (Revised by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfre1 | ⊢ Ⅎ𝑥∃𝑥 ∈ 𝐴 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 2947 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | nfe1 2067 | . 2 ⊢ Ⅎ𝑥∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) | |
3 | 1, 2 | nfxfr 1819 | 1 ⊢ Ⅎ𝑥∃𝑥 ∈ 𝐴 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 ∃wex 1744 Ⅎwnf 1748 ∈ wcel 2030 ∃wrex 2942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-10 2059 |
This theorem depends on definitions: df-bi 197 df-ex 1745 df-nf 1750 df-rex 2947 |
This theorem is referenced by: r19.29an 3106 2rmorex 3445 nfiu1 4582 reusv2lem3 4901 elsnxpOLD 5716 fsnex 6578 eusvobj2 6683 fun11iun 7168 zfregcl 8540 scott0 8787 ac6c4 9341 lbzbi 11814 mreiincl 16303 lss1d 19011 neiptopnei 20984 neitr 21032 utopsnneiplem 22098 cfilucfil 22411 mptelee 25820 isch3 28226 atom1d 29340 xrofsup 29661 2sqmo 29777 locfinreflem 30035 esumc 30241 esumrnmpt2 30258 hasheuni 30275 esumcvg 30276 esumcvgre 30281 voliune 30420 volfiniune 30421 ddemeas 30427 eulerpartlemgvv 30566 bnj900 31125 bnj1189 31203 bnj1204 31206 bnj1398 31228 bnj1444 31237 bnj1445 31238 bnj1446 31239 bnj1447 31240 bnj1467 31248 bnj1518 31258 bnj1519 31259 nosupbnd2 31987 iooelexlt 33340 ptrest 33538 poimirlem26 33565 indexa 33658 filbcmb 33665 sdclem1 33669 heibor1 33739 dihglblem5 36904 suprnmpt 39669 disjinfi 39694 fvelimad 39772 upbdrech 39833 ssfiunibd 39837 infxrunb2 39897 supxrunb3 39936 iccshift 40062 iooshift 40066 islpcn 40189 limsupre 40191 limclner 40201 limsupre3uzlem 40285 climuzlem 40293 xlimmnfv 40378 xlimpnfv 40382 itgperiod 40515 stoweidlem53 40588 stoweidlem57 40592 fourierdlem48 40689 fourierdlem51 40692 fourierdlem73 40714 fourierdlem81 40722 elaa2 40769 etransclem32 40801 sge0iunmptlemre 40950 voliunsge0lem 41007 meaiuninc3v 41019 isomenndlem 41065 ovnsubaddlem1 41105 hoidmvlelem1 41130 hoidmvlelem5 41134 smfaddlem1 41292 reuan 41501 2reurex 41502 2reu4a 41510 2reu7 41512 2reu8 41513 mogoldbb 41998 2zrngagrp 42268 2zrngmmgm 42271 |
Copyright terms: Public domain | W3C validator |