![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfrald | Structured version Visualization version GIF version |
Description: Deduction version of nfral 3084. (Contributed by NM, 15-Feb-2013.) (Revised by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfrald.1 | ⊢ Ⅎ𝑦𝜑 |
nfrald.2 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
nfrald.3 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfrald | ⊢ (𝜑 → Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 3056 | . 2 ⊢ (∀𝑦 ∈ 𝐴 𝜓 ↔ ∀𝑦(𝑦 ∈ 𝐴 → 𝜓)) | |
2 | nfrald.1 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
3 | nfcvf 2927 | . . . . . 6 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝑦) | |
4 | 3 | adantl 473 | . . . . 5 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝑦) |
5 | nfrald.2 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
6 | 5 | adantr 472 | . . . . 5 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝐴) |
7 | 4, 6 | nfeld 2912 | . . . 4 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥 𝑦 ∈ 𝐴) |
8 | nfrald.3 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
9 | 8 | adantr 472 | . . . 4 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓) |
10 | 7, 9 | nfimd 1973 | . . 3 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥(𝑦 ∈ 𝐴 → 𝜓)) |
11 | 2, 10 | nfald2 2472 | . 2 ⊢ (𝜑 → Ⅎ𝑥∀𝑦(𝑦 ∈ 𝐴 → 𝜓)) |
12 | 1, 11 | nfxfrd 1929 | 1 ⊢ (𝜑 → Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 ∀wal 1630 Ⅎwnf 1857 ∈ wcel 2140 Ⅎwnfc 2890 ∀wral 3051 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ral 3056 |
This theorem is referenced by: nfral 3084 nfrexd 3145 |
Copyright terms: Public domain | W3C validator |