![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfrab | Structured version Visualization version GIF version |
Description: A variable not free in a wff remains so in a restricted class abstraction. (Contributed by NM, 13-Oct-2003.) (Revised by Mario Carneiro, 9-Oct-2016.) |
Ref | Expression |
---|---|
nfrab.1 | ⊢ Ⅎ𝑥𝜑 |
nfrab.2 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfrab | ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 3057 | . 2 ⊢ {𝑦 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} | |
2 | nftru 1877 | . . . 4 ⊢ Ⅎ𝑦⊤ | |
3 | nfrab.2 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐴 | |
4 | 3 | nfcri 2894 | . . . . . . 7 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐴 |
5 | eleq1w 2820 | . . . . . . 7 ⊢ (𝑧 = 𝑦 → (𝑧 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
6 | 4, 5 | dvelimnf 2477 | . . . . . 6 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑦 ∈ 𝐴) |
7 | nfrab.1 | . . . . . . 7 ⊢ Ⅎ𝑥𝜑 | |
8 | 7 | a1i 11 | . . . . . 6 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜑) |
9 | 6, 8 | nfand 1973 | . . . . 5 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜑)) |
10 | 9 | adantl 473 | . . . 4 ⊢ ((⊤ ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜑)) |
11 | 2, 10 | nfabd2 2920 | . . 3 ⊢ (⊤ → Ⅎ𝑥{𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)}) |
12 | 11 | trud 1640 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} |
13 | 1, 12 | nfcxfr 2898 | 1 ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 383 ∀wal 1628 ⊤wtru 1631 Ⅎwnf 1855 ∈ wcel 2137 {cab 2744 Ⅎwnfc 2887 {crab 3052 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2045 df-clab 2745 df-cleq 2751 df-clel 2754 df-nfc 2889 df-rab 3057 |
This theorem is referenced by: nfdif 3872 nfin 3961 nfse 5239 elfvmptrab1 6465 elovmpt2rab 7043 elovmpt2rab1 7044 ovmpt3rab1 7054 elovmpt3rab1 7056 mpt2xopoveq 7512 nfoi 8582 scottex 8919 elmptrab 21830 iundisjf 29707 nnindf 29872 bnj1398 31407 bnj1445 31417 bnj1449 31421 nfwlim 32071 finminlem 32616 poimirlem26 33746 poimirlem27 33747 indexa 33839 binomcxplemdvbinom 39052 binomcxplemdvsum 39054 binomcxplemnotnn0 39055 infnsuprnmpt 39962 allbutfiinf 40143 supminfrnmpt 40168 supminfxrrnmpt 40197 fnlimfvre 40407 fnlimabslt 40412 dvnprodlem1 40662 stoweidlem16 40734 stoweidlem31 40749 stoweidlem34 40752 stoweidlem35 40753 stoweidlem48 40766 stoweidlem51 40769 stoweidlem53 40771 stoweidlem54 40772 stoweidlem57 40775 stoweidlem59 40777 fourierdlem31 40856 fourierdlem48 40872 fourierdlem51 40875 etransclem32 40984 ovncvrrp 41282 smflim 41489 smflimmpt 41520 smfsupmpt 41525 smfsupxr 41526 smfinfmpt 41529 smflimsuplem7 41536 |
Copyright terms: Public domain | W3C validator |