![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfra2 | Structured version Visualization version GIF version |
Description: Similar to Lemma 24 of [Monk2] p. 114, except the quantification of the antecedent is restricted. Derived automatically from hbra2VD 39410. Contributed by Alan Sare 31-Dec-2011. (Contributed by NM, 31-Dec-2011.) |
Ref | Expression |
---|---|
nfra2 | ⊢ Ⅎ𝑦∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2793 | . 2 ⊢ Ⅎ𝑦𝐴 | |
2 | nfra1 2970 | . 2 ⊢ Ⅎ𝑦∀𝑦 ∈ 𝐵 𝜑 | |
3 | 1, 2 | nfral 2974 | 1 ⊢ Ⅎ𝑦∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnf 1748 ∀wral 2941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 |
This theorem is referenced by: ralcom2 3133 invdisj 4670 reusv3 4906 dedekind 10238 dedekindle 10239 mreexexd 16355 mreexexdOLD 16356 gsummatr01lem4 20512 ordtconnlem1 30098 bnj1379 31027 tratrb 39063 islptre 40169 sprsymrelfo 42072 |
Copyright terms: Public domain | W3C validator |