MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfofr Structured version   Visualization version   GIF version

Theorem nfofr 6945
Description: Hypothesis builder for function relation. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypothesis
Ref Expression
nfof.1 𝑥𝑅
Assertion
Ref Expression
nfofr 𝑥𝑟 𝑅
Distinct variable group:   𝑥,𝑅

Proof of Theorem nfofr
StepHypRef Expression
1 nfcv 2793 1 𝑥𝑟 𝑅
Colors of variables: wff setvar class
Syntax hints:  wnfc 2780  𝑟 cofr 6938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-5 1879
This theorem depends on definitions:  df-bi 197  df-ex 1745  df-nf 1750  df-nfc 2782
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator