Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfneg Structured version   Visualization version   GIF version

Theorem nfneg 10315
 Description: Bound-variable hypothesis builder for the negative of a complex number. (Contributed by NM, 12-Jun-2005.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypothesis
Ref Expression
nfneg.1 𝑥𝐴
Assertion
Ref Expression
nfneg 𝑥-𝐴

Proof of Theorem nfneg
StepHypRef Expression
1 nfneg.1 . . . 4 𝑥𝐴
21a1i 11 . . 3 (⊤ → 𝑥𝐴)
32nfnegd 10314 . 2 (⊤ → 𝑥-𝐴)
43trud 1533 1 𝑥-𝐴
 Colors of variables: wff setvar class Syntax hints:  ⊤wtru 1524  Ⅎwnfc 2780  -cneg 10305 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-iota 5889  df-fv 5934  df-ov 6693  df-neg 10307 This theorem is referenced by:  riotaneg  11040  zriotaneg  11529  infcvgaux1i  14633  mbfposb  23465  dvfsum2  23842  infnsuprnmpt  39779  neglimc  40197  stoweidlem23  40558  stoweidlem47  40582
 Copyright terms: Public domain W3C validator