![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfne | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for inequality. (Contributed by NM, 10-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfne.1 | ⊢ Ⅎ𝑥𝐴 |
nfne.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfne | ⊢ Ⅎ𝑥 𝐴 ≠ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2824 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | nfne.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | nfne.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
4 | 2, 3 | nfeq 2805 | . . 3 ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
5 | 4 | nfn 1824 | . 2 ⊢ Ⅎ𝑥 ¬ 𝐴 = 𝐵 |
6 | 1, 5 | nfxfr 1819 | 1 ⊢ Ⅎ𝑥 𝐴 ≠ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1523 Ⅎwnf 1748 Ⅎwnfc 2780 ≠ wne 2823 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-cleq 2644 df-nfc 2782 df-ne 2824 |
This theorem is referenced by: cantnflem1 8624 ac6c4 9341 fproddiv 14735 fprodn0 14753 fproddivf 14762 mreiincl 16303 lss1d 19011 iunconn 21279 restmetu 22422 coeeq2 24043 bnj1534 31049 bnj1542 31053 bnj1398 31228 bnj1445 31238 bnj1449 31242 bnj1312 31252 bnj1525 31263 cvmcov 31371 nfwlim 31892 sltval2 31934 finminlem 32437 finxpreclem2 33357 poimirlem25 33564 poimirlem26 33565 poimirlem28 33567 cdleme40m 36072 cdleme40n 36073 dihglblem5 36904 iunconnlem2 39485 eliuniin2 39617 suprnmpt 39669 disjf1 39683 disjrnmpt2 39689 disjinfi 39694 allbutfiinf 39960 fsumiunss 40125 idlimc 40176 0ellimcdiv 40199 stoweidlem31 40566 stoweidlem58 40593 fourierdlem31 40673 sge0iunmpt 40953 |
Copyright terms: Public domain | W3C validator |