MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfna1 Structured version   Visualization version   GIF version

Theorem nfna1 2176
Description: A convenience theorem particularly designed to remove dependencies on ax-11 2181 in conjunction with distinctors. (Contributed by Wolf Lammen, 2-Sep-2018.)
Assertion
Ref Expression
nfna1 𝑥 ¬ ∀𝑥𝜑

Proof of Theorem nfna1
StepHypRef Expression
1 nfa1 2175 . 2 𝑥𝑥𝜑
21nfn 1931 1 𝑥 ¬ ∀𝑥𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wal 1628  wnf 1855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-10 2166
This theorem depends on definitions:  df-bi 197  df-or 384  df-ex 1852  df-nf 1857
This theorem is referenced by:  dvelimhw  2316  nfeqf  2444  equs5  2486  nfsb2  2495  wl-equsb3  33648  wl-sbcom2d-lem1  33653  wl-ax11-lem3  33675  wl-ax11-lem4  33676  wl-ax11-lem6  33678  wl-ax11-lem7  33679
  Copyright terms: Public domain W3C validator