![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfn | Structured version Visualization version GIF version |
Description: Inference associated with nfnt 1822. (Contributed by Mario Carneiro, 11-Aug-2016.) df-nf 1750 changed. (Revised by Wolf Lammen, 18-Sep-2021.) |
Ref | Expression |
---|---|
nfn.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfn | ⊢ Ⅎ𝑥 ¬ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfn.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | nfnt 1822 | . 2 ⊢ (Ⅎ𝑥𝜑 → Ⅎ𝑥 ¬ 𝜑) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ Ⅎ𝑥 ¬ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 Ⅎwnf 1748 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 |
This theorem depends on definitions: df-bi 197 df-or 384 df-ex 1745 df-nf 1750 |
This theorem is referenced by: nfanOLD 1869 nfnan 1870 nfor 1874 nfa1 2068 nfna1 2069 nfan1 2106 19.32 2139 nfex 2192 cbvexv1 2212 cbvex 2308 cbvex2 2316 nfnae 2351 axc14 2400 euor 2541 euor2 2543 nfne 2923 nfnel 2933 cbvrexf 3196 spcimegf 3318 spcegf 3320 cbvrexcsf 3599 nfdif 3764 rabsnifsb 4289 nfpo 5069 nffr 5117 rexxpf 5302 0neqopab 6740 boxcutc 7993 nfoi 8460 rabssnn0fi 12825 fsuppmapnn0fiubex 12832 sumodd 15158 spc2d 29441 fprodex01 29699 ordtconnlem1 30098 esumrnmpt2 30258 ddemeas 30427 bnj1388 31227 bnj1398 31228 bnj1445 31238 bnj1449 31242 nosupbnd1 31985 nosupbnd2 31987 bj-cbvex2v 32863 finxpreclem6 33363 wl-nfnae1 33446 cdlemefs32sn1aw 36019 ss2iundf 38268 ax6e2ndeqALT 39481 uzwo4 39535 eliin2f 39601 stoweidlem55 40590 stoweidlem59 40594 etransclem32 40801 salexct 40870 sge0f1o 40917 incsmflem 41271 decsmflem 41295 r19.32 41488 |
Copyright terms: Public domain | W3C validator |