![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfmpt22 | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for an operation in maps-to notation. (Contributed by NM, 27-Aug-2013.) |
Ref | Expression |
---|---|
nfmpt22 | ⊢ Ⅎ𝑦(𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mpt2 6695 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | |
2 | nfoprab2 6747 | . 2 ⊢ Ⅎ𝑦{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | |
3 | 1, 2 | nfcxfr 2791 | 1 ⊢ Ⅎ𝑦(𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 = wceq 1523 ∈ wcel 2030 Ⅎwnfc 2780 {coprab 6691 ↦ cmpt2 6692 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-oprab 6694 df-mpt2 6695 |
This theorem is referenced by: ovmpt2s 6826 ov2gf 6827 ovmpt2dxf 6828 ovmpt2df 6834 ovmpt2dv2 6836 xpcomco 8091 mapxpen 8167 pwfseqlem2 9519 pwfseqlem4a 9521 pwfseqlem4 9522 gsum2d2lem 18418 gsum2d2 18419 gsumcom2 18420 dprd2d2 18489 cnmpt21 21522 cnmpt2t 21524 cnmptcom 21529 cnmpt2k 21539 xkocnv 21665 finxpreclem2 33357 finxpreclem6 33363 fmuldfeq 40133 smflimlem6 41305 ovmpt2rdxf 42442 |
Copyright terms: Public domain | W3C validator |