![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfmpt21 | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for an operation in maps-to notation. (Contributed by NM, 27-Aug-2013.) |
Ref | Expression |
---|---|
nfmpt21 | ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mpt2 6819 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | |
2 | nfoprab1 6870 | . 2 ⊢ Ⅎ𝑥{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | |
3 | 1, 2 | nfcxfr 2900 | 1 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 = wceq 1632 ∈ wcel 2139 Ⅎwnfc 2889 {coprab 6815 ↦ cmpt2 6816 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-oprab 6818 df-mpt2 6819 |
This theorem is referenced by: ovmpt2s 6950 ov2gf 6951 ovmpt2dxf 6952 ovmpt2df 6958 ovmpt2dv2 6960 xpcomco 8217 mapxpen 8293 pwfseqlem2 9693 pwfseqlem4a 9695 pwfseqlem4 9696 gsum2d2lem 18592 gsum2d2 18593 gsumcom2 18594 dprd2d2 18663 cnmpt21 21696 cnmpt2t 21698 cnmptcom 21703 cnmpt2k 21713 xkocnv 21839 numclwlk2lem2f1o 27561 numclwlk2lem2f1oOLD 27568 finxpreclem2 33556 cnfinltrel 33570 fmuldfeqlem1 40335 fmuldfeq 40336 ovmpt2rdxf 42645 |
Copyright terms: Public domain | W3C validator |