![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfmpt | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for the maps-to notation. (Contributed by NM, 20-Feb-2013.) |
Ref | Expression |
---|---|
nfmpt.1 | ⊢ Ⅎ𝑥𝐴 |
nfmpt.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfmpt | ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ↦ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mpt 4880 | . 2 ⊢ (𝑦 ∈ 𝐴 ↦ 𝐵) = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐵)} | |
2 | nfmpt.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | nfcri 2894 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
4 | nfmpt.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
5 | 4 | nfeq2 2916 | . . . 4 ⊢ Ⅎ𝑥 𝑧 = 𝐵 |
6 | 3, 5 | nfan 1975 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐵) |
7 | 6 | nfopab 4868 | . 2 ⊢ Ⅎ𝑥{〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐵)} |
8 | 1, 7 | nfcxfr 2898 | 1 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ↦ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 = wceq 1630 ∈ wcel 2137 Ⅎwnfc 2887 {copab 4862 ↦ cmpt 4879 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2045 df-clab 2745 df-cleq 2751 df-clel 2754 df-nfc 2889 df-opab 4863 df-mpt 4880 |
This theorem is referenced by: ovmpt3rab1 7054 mpt2curryvald 7563 nfrdg 7677 mapxpen 8289 nfoi 8582 seqof2 13051 nfsum1 14617 nfsum 14618 fsumrlim 14740 fsumo1 14741 nfcprod1 14837 nfcprod 14838 gsum2d2 18571 prdsgsum 18575 dprd2d2 18641 gsumdixp 18807 mpfrcl 19718 ptbasfi 21584 ptcnplem 21624 ptcnp 21625 cnmptk2 21689 cnmpt2k 21691 xkocnv 21817 fsumcn 22872 itg2cnlem1 23725 nfitg 23738 itgfsum 23790 dvmptfsum 23935 itgulm2 24360 lgamgulm2 24959 fmptcof2 29764 fpwrelmap 29815 nfesum2 30410 sigapildsys 30532 oms0 30666 bnj1366 31205 nosupbnd2 32166 poimirlem26 33746 cdleme32d 36232 cdleme32f 36234 cdlemksv2 36635 cdlemkuv2 36655 hlhilset 37726 aomclem8 38131 binomcxplemdvsum 39054 refsum2cn 39694 wessf1ornlem 39868 fmuldfeq 40316 fprodcnlem 40332 fprodcn 40333 fnlimfv 40396 fnlimcnv 40400 fnlimfvre 40407 fnlimfvre2 40410 fnlimf 40411 fnlimabslt 40412 fprodcncf 40615 dvnmptdivc 40654 dvmptfprod 40661 dvnprodlem1 40662 stoweidlem26 40744 stoweidlem31 40749 stoweidlem34 40752 stoweidlem35 40753 stoweidlem42 40760 stoweidlem48 40766 stoweidlem59 40777 fourierdlem31 40856 fourierdlem112 40936 sge0iunmptlemfi 41131 sge0iunmptlemre 41133 sge0iunmpt 41136 hoicvrrex 41274 ovncvrrp 41282 ovnhoilem1 41319 ovnlecvr2 41328 vonicc 41403 smflim 41489 smfmullem4 41505 smflim2 41516 smflimmpt 41520 smfsup 41524 smfsupmpt 41525 smfinf 41528 smfinfmpt 41529 smflimsuplem2 41531 smflimsuplem5 41534 smflimsup 41538 smflimsupmpt 41539 smfliminf 41541 smfliminfmpt 41542 aacllem 43058 |
Copyright terms: Public domain | W3C validator |