Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfmod Structured version   Visualization version   GIF version

Theorem nfmod 2586
 Description: Bound-variable hypothesis builder for "at most one." (Contributed by Mario Carneiro, 14-Nov-2016.)
Hypotheses
Ref Expression
nfeud.1 𝑦𝜑
nfeud.2 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfmod (𝜑 → Ⅎ𝑥∃*𝑦𝜓)

Proof of Theorem nfmod
StepHypRef Expression
1 nfeud.1 . 2 𝑦𝜑
2 nfeud.2 . . 3 (𝜑 → Ⅎ𝑥𝜓)
32adantr 472 . 2 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓)
41, 3nfmod2 2584 1 (𝜑 → Ⅎ𝑥∃*𝑦𝜓)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4  ∀wal 1594  Ⅎwnf 1821  ∃*wmo 2572 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1599  df-ex 1818  df-nf 1823  df-eu 2575  df-mo 2576 This theorem is referenced by:  nfmo  2588  wl-mo3t  33590
 Copyright terms: Public domain W3C validator