Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfmo Structured version   Visualization version   GIF version

Theorem nfmo 2624
 Description: Bound-variable hypothesis builder for "at most one." (Contributed by NM, 9-Mar-1995.)
Hypothesis
Ref Expression
nfeu.1 𝑥𝜑
Assertion
Ref Expression
nfmo 𝑥∃*𝑦𝜑

Proof of Theorem nfmo
StepHypRef Expression
1 nftru 1879 . . 3 𝑦
2 nfeu.1 . . . 4 𝑥𝜑
32a1i 11 . . 3 (⊤ → Ⅎ𝑥𝜑)
41, 3nfmod 2622 . 2 (⊤ → Ⅎ𝑥∃*𝑦𝜑)
54trud 1642 1 𝑥∃*𝑦𝜑
 Colors of variables: wff setvar class Syntax hints:  ⊤wtru 1633  Ⅎwnf 1857  ∃*wmo 2608 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1635  df-ex 1854  df-nf 1859  df-eu 2611  df-mo 2612 This theorem is referenced by:  mo3  2645  moexex  2679  2moex  2681  2euex  2682  2mo  2689  reusv1  5015  reusv1OLD  5016  reusv2lem1  5017  mosubopt  5120  dffun6f  6063
 Copyright terms: Public domain W3C validator