MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfiun Structured version   Visualization version   GIF version

Theorem nfiun 4700
Description: Bound-variable hypothesis builder for indexed union. (Contributed by Mario Carneiro, 25-Jan-2014.)
Hypotheses
Ref Expression
nfiun.1 𝑦𝐴
nfiun.2 𝑦𝐵
Assertion
Ref Expression
nfiun 𝑦 𝑥𝐴 𝐵

Proof of Theorem nfiun
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-iun 4674 . 2 𝑥𝐴 𝐵 = {𝑧 ∣ ∃𝑥𝐴 𝑧𝐵}
2 nfiun.1 . . . 4 𝑦𝐴
3 nfiun.2 . . . . 5 𝑦𝐵
43nfcri 2896 . . . 4 𝑦 𝑧𝐵
52, 4nfrex 3145 . . 3 𝑦𝑥𝐴 𝑧𝐵
65nfab 2907 . 2 𝑦{𝑧 ∣ ∃𝑥𝐴 𝑧𝐵}
71, 6nfcxfr 2900 1 𝑦 𝑥𝐴 𝐵
Colors of variables: wff setvar class
Syntax hints:  wcel 2139  {cab 2746  wnfc 2889  wrex 3051   ciun 4672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rex 3056  df-iun 4674
This theorem is referenced by:  iunab  4718  disjxiun  4801  ovoliunnul  23475  iundisjf  29709  iundisj2f  29710  iundisjfi  29864  iundisj2fi  29865  bnj1498  31436  trpredlem1  32032  trpredrec  32043  ss2iundf  38453  fnlimcnv  40402  fnlimfvre  40409  fnlimabslt  40414  smfaddlem1  41477  smflimlem6  41490  smflim  41491  smfmullem4  41507  smflim2  41518  smflimsup  41540  smfliminf  41543
  Copyright terms: Public domain W3C validator