MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfitg Structured version   Visualization version   GIF version

Theorem nfitg 23740
Description: Bound-variable hypothesis builder for an integral: if 𝑦 is (effectively) not free in 𝐴 and 𝐵, it is not free in 𝐴𝐵 d𝑥. (Contributed by Mario Carneiro, 28-Jun-2014.)
Hypotheses
Ref Expression
nfitg.1 𝑦𝐴
nfitg.2 𝑦𝐵
Assertion
Ref Expression
nfitg 𝑦𝐴𝐵 d𝑥
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem nfitg
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eqid 2760 . . 3 (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐵 / (i↑𝑘)))
21dfitg 23735 . 2 𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))))
3 nfcv 2902 . . 3 𝑦(0...3)
4 nfcv 2902 . . . 4 𝑦(i↑𝑘)
5 nfcv 2902 . . . 4 𝑦 ·
6 nfcv 2902 . . . . 5 𝑦2
7 nfcv 2902 . . . . . 6 𝑦
8 nfitg.1 . . . . . . . . 9 𝑦𝐴
98nfcri 2896 . . . . . . . 8 𝑦 𝑥𝐴
10 nfcv 2902 . . . . . . . . 9 𝑦0
11 nfcv 2902 . . . . . . . . 9 𝑦
12 nfcv 2902 . . . . . . . . . 10 𝑦
13 nfitg.2 . . . . . . . . . . 11 𝑦𝐵
14 nfcv 2902 . . . . . . . . . . 11 𝑦 /
1513, 14, 4nfov 6839 . . . . . . . . . 10 𝑦(𝐵 / (i↑𝑘))
1612, 15nffv 6359 . . . . . . . . 9 𝑦(ℜ‘(𝐵 / (i↑𝑘)))
1710, 11, 16nfbr 4851 . . . . . . . 8 𝑦0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))
189, 17nfan 1977 . . . . . . 7 𝑦(𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘))))
1918, 16, 10nfif 4259 . . . . . 6 𝑦if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)
207, 19nfmpt 4898 . . . . 5 𝑦(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))
216, 20nffv 6359 . . . 4 𝑦(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))
224, 5, 21nfov 6839 . . 3 𝑦((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))))
233, 22nfsum 14620 . 2 𝑦Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))))
242, 23nfcxfr 2900 1 𝑦𝐴𝐵 d𝑥
Colors of variables: wff setvar class
Syntax hints:  wa 383  wcel 2139  wnfc 2889  ifcif 4230   class class class wbr 4804  cmpt 4881  cfv 6049  (class class class)co 6813  cr 10127  0cc0 10128  ici 10130   · cmul 10133  cle 10267   / cdiv 10876  3c3 11263  ...cfz 12519  cexp 13054  cre 14036  Σcsu 14615  2citg2 23584  citg 23586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-n0 11485  df-z 11570  df-uz 11880  df-fz 12520  df-seq 12996  df-sum 14616  df-itg 23591
This theorem is referenced by:  itgfsum  23792  itgulm2  24362  fourierdlem112  40938
  Copyright terms: Public domain W3C validator