![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfiotad | Structured version Visualization version GIF version |
Description: Deduction version of nfiota 6016. (Contributed by NM, 18-Feb-2013.) |
Ref | Expression |
---|---|
nfiotad.1 | ⊢ Ⅎ𝑦𝜑 |
nfiotad.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfiotad | ⊢ (𝜑 → Ⅎ𝑥(℩𝑦𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfiota2 6013 | . 2 ⊢ (℩𝑦𝜓) = ∪ {𝑧 ∣ ∀𝑦(𝜓 ↔ 𝑦 = 𝑧)} | |
2 | nfv 1992 | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
3 | nfiotad.1 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
4 | nfiotad.2 | . . . . . . 7 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
5 | 4 | adantr 472 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓) |
6 | nfeqf1 2444 | . . . . . . 7 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑦 = 𝑧) | |
7 | 6 | adantl 473 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥 𝑦 = 𝑧) |
8 | 5, 7 | nfbid 1981 | . . . . 5 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥(𝜓 ↔ 𝑦 = 𝑧)) |
9 | 3, 8 | nfald2 2471 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥∀𝑦(𝜓 ↔ 𝑦 = 𝑧)) |
10 | 2, 9 | nfabd 2923 | . . 3 ⊢ (𝜑 → Ⅎ𝑥{𝑧 ∣ ∀𝑦(𝜓 ↔ 𝑦 = 𝑧)}) |
11 | 10 | nfunid 4595 | . 2 ⊢ (𝜑 → Ⅎ𝑥∪ {𝑧 ∣ ∀𝑦(𝜓 ↔ 𝑦 = 𝑧)}) |
12 | 1, 11 | nfcxfrd 2901 | 1 ⊢ (𝜑 → Ⅎ𝑥(℩𝑦𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 ∀wal 1630 Ⅎwnf 1857 {cab 2746 Ⅎwnfc 2889 ∪ cuni 4588 ℩cio 6010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-sn 4322 df-uni 4589 df-iota 6012 |
This theorem is referenced by: nfiota 6016 nfriotad 6782 |
Copyright terms: Public domain | W3C validator |