![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfiota1 | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for the ℩ class. (Contributed by Andrew Salmon, 11-Jul-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nfiota1 | ⊢ Ⅎ𝑥(℩𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfiota2 6014 | . 2 ⊢ (℩𝑥𝜑) = ∪ {𝑦 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)} | |
2 | nfaba1 2909 | . . 3 ⊢ Ⅎ𝑥{𝑦 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)} | |
3 | 2 | nfuni 4595 | . 2 ⊢ Ⅎ𝑥∪ {𝑦 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)} |
4 | 1, 3 | nfcxfr 2901 | 1 ⊢ Ⅎ𝑥(℩𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∀wal 1630 {cab 2747 Ⅎwnfc 2890 ∪ cuni 4589 ℩cio 6011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ral 3056 df-rex 3057 df-sn 4323 df-uni 4590 df-iota 6013 |
This theorem is referenced by: iota2df 6037 sniota 6040 opabiota 6425 nfriota1 6783 nfriotad 6784 erovlem 8013 bnj1366 31229 nosupbnd2 32190 |
Copyright terms: Public domain | W3C validator |