MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfin Structured version   Visualization version   GIF version

Theorem nfin 3951
Description: Bound-variable hypothesis builder for the intersection of classes. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
nfin.1 𝑥𝐴
nfin.2 𝑥𝐵
Assertion
Ref Expression
nfin 𝑥(𝐴𝐵)

Proof of Theorem nfin
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfin5 3711 . 2 (𝐴𝐵) = {𝑦𝐴𝑦𝐵}
2 nfin.2 . . . 4 𝑥𝐵
32nfcri 2884 . . 3 𝑥 𝑦𝐵
4 nfin.1 . . 3 𝑥𝐴
53, 4nfrab 3250 . 2 𝑥{𝑦𝐴𝑦𝐵}
61, 5nfcxfr 2888 1 𝑥(𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wcel 2127  wnfc 2877  {crab 3042  cin 3702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-rab 3047  df-in 3710
This theorem is referenced by:  csbin  4141  iunxdif3  4746  disjxun  4790  nfres  5541  nfpred  5834  cp  8915  tskwe  8937  iunconn  21404  ptclsg  21591  restmetu  22547  limciun  23828  disjunsn  29685  ordtconnlem1  30250  esum2d  30435  finminlem  32589  mbfposadd  33739  csbingOLD  39523  iunconnlem2  39639  inn0f  39710  disjrnmpt2  39843  disjinfi  39848  fsumiunss  40279  stoweidlem57  40746  fourierdlem80  40875  sge0iunmptlemre  41104  iundjiun  41149  pimiooltgt  41396  smflim  41460  smfpimcclem  41488  smfpimcc  41489
  Copyright terms: Public domain W3C validator