Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfimdetndef Structured version   Visualization version   GIF version

Theorem nfimdetndef 20618
 Description: The determinant is not defined for an infinite matrix. (Contributed by AV, 27-Dec-2018.)
Hypothesis
Ref Expression
nfimdetndef.d 𝐷 = (𝑁 maDet 𝑅)
Assertion
Ref Expression
nfimdetndef (𝑁 ∉ Fin → 𝐷 = ∅)

Proof of Theorem nfimdetndef
Dummy variables 𝑚 𝑝 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfimdetndef.d . . 3 𝐷 = (𝑁 maDet 𝑅)
2 eqid 2761 . . 3 (𝑁 Mat 𝑅) = (𝑁 Mat 𝑅)
3 eqid 2761 . . 3 (Base‘(𝑁 Mat 𝑅)) = (Base‘(𝑁 Mat 𝑅))
4 eqid 2761 . . 3 (Base‘(SymGrp‘𝑁)) = (Base‘(SymGrp‘𝑁))
5 eqid 2761 . . 3 (ℤRHom‘𝑅) = (ℤRHom‘𝑅)
6 eqid 2761 . . 3 (pmSgn‘𝑁) = (pmSgn‘𝑁)
7 eqid 2761 . . 3 (.r𝑅) = (.r𝑅)
8 eqid 2761 . . 3 (mulGrp‘𝑅) = (mulGrp‘𝑅)
91, 2, 3, 4, 5, 6, 7, 8mdetfval 20615 . 2 𝐷 = (𝑚 ∈ (Base‘(𝑁 Mat 𝑅)) ↦ (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥)))))))
10 df-nel 3037 . . . . . . 7 (𝑁 ∉ Fin ↔ ¬ 𝑁 ∈ Fin)
1110biimpi 206 . . . . . 6 (𝑁 ∉ Fin → ¬ 𝑁 ∈ Fin)
1211intnanrd 1001 . . . . 5 (𝑁 ∉ Fin → ¬ (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
13 matbas0 20439 . . . . 5 (¬ (𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (Base‘(𝑁 Mat 𝑅)) = ∅)
1412, 13syl 17 . . . 4 (𝑁 ∉ Fin → (Base‘(𝑁 Mat 𝑅)) = ∅)
1514mpteq1d 4891 . . 3 (𝑁 ∉ Fin → (𝑚 ∈ (Base‘(𝑁 Mat 𝑅)) ↦ (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥))))))) = (𝑚 ∈ ∅ ↦ (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥))))))))
16 mpt0 6183 . . 3 (𝑚 ∈ ∅ ↦ (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥))))))) = ∅
1715, 16syl6eq 2811 . 2 (𝑁 ∉ Fin → (𝑚 ∈ (Base‘(𝑁 Mat 𝑅)) ↦ (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥))))))) = ∅)
189, 17syl5eq 2807 1 (𝑁 ∉ Fin → 𝐷 = ∅)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   = wceq 1632   ∈ wcel 2140   ∉ wnel 3036  Vcvv 3341  ∅c0 4059   ↦ cmpt 4882   ∘ ccom 5271  ‘cfv 6050  (class class class)co 6815  Fincfn 8124  Basecbs 16080  .rcmulr 16165   Σg cgsu 16324  SymGrpcsymg 18018  pmSgncpsgn 18130  mulGrpcmgp 18710  ℤRHomczrh 20071   Mat cmat 20436   maDet cmdat 20613 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-nul 4060  df-if 4232  df-sn 4323  df-pr 4325  df-op 4329  df-uni 4590  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-id 5175  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-slot 16084  df-base 16086  df-mat 20437  df-mdet 20614 This theorem is referenced by:  mdetfval1  20619
 Copyright terms: Public domain W3C validator