![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfima | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for image. (Contributed by NM, 30-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
nfima.1 | ⊢ Ⅎ𝑥𝐴 |
nfima.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfima | ⊢ Ⅎ𝑥(𝐴 “ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 5279 | . 2 ⊢ (𝐴 “ 𝐵) = ran (𝐴 ↾ 𝐵) | |
2 | nfima.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | nfima.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
4 | 2, 3 | nfres 5553 | . . 3 ⊢ Ⅎ𝑥(𝐴 ↾ 𝐵) |
5 | 4 | nfrn 5523 | . 2 ⊢ Ⅎ𝑥ran (𝐴 ↾ 𝐵) |
6 | 1, 5 | nfcxfr 2900 | 1 ⊢ Ⅎ𝑥(𝐴 “ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2889 ran crn 5267 ↾ cres 5268 “ cima 5269 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-br 4805 df-opab 4865 df-xp 5272 df-cnv 5274 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 |
This theorem is referenced by: nfimad 5633 csbima12 5641 nfpred 5846 nfsup 8524 nfoi 8586 nfseq 13025 gsum2d2 18593 ptbasfi 21606 mbfposr 23638 itg1climres 23700 limciun 23877 funimass4f 29767 poimirlem16 33756 poimirlem19 33759 aomclem8 38151 areaquad 38322 binomcxplemdvbinom 39072 binomcxplemdvsum 39074 binomcxplemnotnn0 39075 rfcnpre1 39695 rfcnpre2 39707 smfpimcc 41538 |
Copyright terms: Public domain | W3C validator |