MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfifd Structured version   Visualization version   GIF version

Theorem nfifd 4222
Description: Deduction version of nfif 4223. (Contributed by NM, 15-Feb-2013.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypotheses
Ref Expression
nfifd.2 (𝜑 → Ⅎ𝑥𝜓)
nfifd.3 (𝜑𝑥𝐴)
nfifd.4 (𝜑𝑥𝐵)
Assertion
Ref Expression
nfifd (𝜑𝑥if(𝜓, 𝐴, 𝐵))

Proof of Theorem nfifd
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfif2 4196 . 2 if(𝜓, 𝐴, 𝐵) = {𝑦 ∣ ((𝑦𝐵𝜓) → (𝑦𝐴𝜓))}
2 nfv 1956 . . 3 𝑦𝜑
3 nfifd.4 . . . . . 6 (𝜑𝑥𝐵)
43nfcrd 2873 . . . . 5 (𝜑 → Ⅎ𝑥 𝑦𝐵)
5 nfifd.2 . . . . 5 (𝜑 → Ⅎ𝑥𝜓)
64, 5nfimd 1936 . . . 4 (𝜑 → Ⅎ𝑥(𝑦𝐵𝜓))
7 nfifd.3 . . . . . 6 (𝜑𝑥𝐴)
87nfcrd 2873 . . . . 5 (𝜑 → Ⅎ𝑥 𝑦𝐴)
98, 5nfand 1939 . . . 4 (𝜑 → Ⅎ𝑥(𝑦𝐴𝜓))
106, 9nfimd 1936 . . 3 (𝜑 → Ⅎ𝑥((𝑦𝐵𝜓) → (𝑦𝐴𝜓)))
112, 10nfabd 2887 . 2 (𝜑𝑥{𝑦 ∣ ((𝑦𝐵𝜓) → (𝑦𝐴𝜓))})
121, 11nfcxfrd 2865 1 (𝜑𝑥if(𝜓, 𝐴, 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wnf 1821  wcel 2103  {cab 2710  wnfc 2853  ifcif 4194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-if 4195
This theorem is referenced by:  nfif  4223  nfxnegd  40083
  Copyright terms: Public domain W3C validator