![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfif | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for a conditional operator. (Contributed by NM, 16-Feb-2005.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
nfif.1 | ⊢ Ⅎ𝑥𝜑 |
nfif.2 | ⊢ Ⅎ𝑥𝐴 |
nfif.3 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfif | ⊢ Ⅎ𝑥if(𝜑, 𝐴, 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfif.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
3 | nfif.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
5 | nfif.3 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
6 | 5 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐵) |
7 | 2, 4, 6 | nfifd 4147 | . 2 ⊢ (⊤ → Ⅎ𝑥if(𝜑, 𝐴, 𝐵)) |
8 | 7 | trud 1533 | 1 ⊢ Ⅎ𝑥if(𝜑, 𝐴, 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1524 Ⅎwnf 1748 Ⅎwnfc 2780 ifcif 4119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-if 4120 |
This theorem is referenced by: csbif 4171 nfop 4449 nfrdg 7555 boxcutc 7993 nfoi 8460 nfsum1 14464 nfsum 14465 summolem2a 14490 zsum 14493 sumss 14499 sumss2 14501 fsumcvg2 14502 nfcprod 14685 cbvprod 14689 prodmolem2a 14708 zprod 14711 fprod 14715 fprodntriv 14716 prodss 14721 pcmpt 15643 pcmptdvds 15645 gsummpt1n0 18410 madugsum 20497 mbfpos 23463 mbfposb 23465 i1fposd 23519 isibl2 23578 nfitg 23586 cbvitg 23587 itgss3 23626 itgcn 23654 limcmpt 23692 rlimcnp2 24738 chirred 29382 nosupbnd2 31987 cdleme31sn 35985 cdleme32d 36049 cdleme32f 36051 refsum2cn 39511 ssfiunibd 39837 uzub 39971 limsupubuz 40263 icccncfext 40418 fourierdlem86 40727 vonicc 41220 nfafv 41537 |
Copyright terms: Public domain | W3C validator |