MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nffn Structured version   Visualization version   GIF version

Theorem nffn 6148
Description: Bound-variable hypothesis builder for a function with domain. (Contributed by NM, 30-Jan-2004.)
Hypotheses
Ref Expression
nffn.1 𝑥𝐹
nffn.2 𝑥𝐴
Assertion
Ref Expression
nffn 𝑥 𝐹 Fn 𝐴

Proof of Theorem nffn
StepHypRef Expression
1 df-fn 6052 . 2 (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴))
2 nffn.1 . . . 4 𝑥𝐹
32nffun 6072 . . 3 𝑥Fun 𝐹
42nfdm 5522 . . . 4 𝑥dom 𝐹
5 nffn.2 . . . 4 𝑥𝐴
64, 5nfeq 2914 . . 3 𝑥dom 𝐹 = 𝐴
73, 6nfan 1977 . 2 𝑥(Fun 𝐹 ∧ dom 𝐹 = 𝐴)
81, 7nfxfr 1928 1 𝑥 𝐹 Fn 𝐴
Colors of variables: wff setvar class
Syntax hints:  wa 383   = wceq 1632  wnf 1857  wnfc 2889  dom cdm 5266  Fun wfun 6043   Fn wfn 6044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rab 3059  df-v 3342  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-br 4805  df-opab 4865  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-fun 6051  df-fn 6052
This theorem is referenced by:  nff  6202  nffo  6275  feqmptdf  6413  nfixp  8093  nfixp1  8094  bnj1463  31430  choicefi  39891  stoweidlem31  40751  stoweidlem35  40755  stoweidlem59  40779
  Copyright terms: Public domain W3C validator