![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nff | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for a mapping. (Contributed by NM, 29-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nff.1 | ⊢ Ⅎ𝑥𝐹 |
nff.2 | ⊢ Ⅎ𝑥𝐴 |
nff.3 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nff | ⊢ Ⅎ𝑥 𝐹:𝐴⟶𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f 6053 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
2 | nff.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
3 | nff.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
4 | 2, 3 | nffn 6148 | . . 3 ⊢ Ⅎ𝑥 𝐹 Fn 𝐴 |
5 | 2 | nfrn 5523 | . . . 4 ⊢ Ⅎ𝑥ran 𝐹 |
6 | nff.3 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
7 | 5, 6 | nfss 3737 | . . 3 ⊢ Ⅎ𝑥ran 𝐹 ⊆ 𝐵 |
8 | 4, 7 | nfan 1977 | . 2 ⊢ Ⅎ𝑥(𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) |
9 | 1, 8 | nfxfr 1928 | 1 ⊢ Ⅎ𝑥 𝐹:𝐴⟶𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 Ⅎwnf 1857 Ⅎwnfc 2889 ⊆ wss 3715 ran crn 5267 Fn wfn 6044 ⟶wf 6045 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-br 4805 df-opab 4865 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-fun 6051 df-fn 6052 df-f 6053 |
This theorem is referenced by: nff1 6260 nfwrd 13539 lfgrnloop 26240 fcomptf 29788 aciunf1lem 29792 esumfzf 30461 esumfsup 30462 poimirlem24 33764 sdclem1 33870 dffo3f 39881 fmuldfeqlem1 40335 fnlimfvre 40427 dvnmul 40679 stoweidlem53 40791 stoweidlem54 40792 stoweidlem57 40795 sge0iunmpt 41156 |
Copyright terms: Public domain | W3C validator |