Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfeu Structured version   Visualization version   GIF version

Theorem nfeu 2514
 Description: Bound-variable hypothesis builder for uniqueness. Note that 𝑥 and 𝑦 needn't be distinct. (Contributed by NM, 8-Mar-1995.) (Revised by Mario Carneiro, 7-Oct-2016.)
Hypothesis
Ref Expression
nfeu.1 𝑥𝜑
Assertion
Ref Expression
nfeu 𝑥∃!𝑦𝜑

Proof of Theorem nfeu
StepHypRef Expression
1 nftru 1770 . . 3 𝑦
2 nfeu.1 . . . 4 𝑥𝜑
32a1i 11 . . 3 (⊤ → Ⅎ𝑥𝜑)
41, 3nfeud 2512 . 2 (⊤ → Ⅎ𝑥∃!𝑦𝜑)
54trud 1533 1 𝑥∃!𝑦𝜑
 Colors of variables: wff setvar class Syntax hints:  ⊤wtru 1524  Ⅎwnf 1748  ∃!weu 2498 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-eu 2502 This theorem is referenced by:  2eu7  2588  2eu8  2589  eusv2nf  4894  reusv2lem3  4901  bnj1489  31250  setrec2  42767
 Copyright terms: Public domain W3C validator