![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfeqf2 | Structured version Visualization version GIF version |
Description: An equation between setvar is free of any other setvar. (Contributed by Wolf Lammen, 9-Jun-2019.) |
Ref | Expression |
---|---|
nfeqf2 | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑧 = 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exnal 1794 | . 2 ⊢ (∃𝑥 ¬ 𝑥 = 𝑦 ↔ ¬ ∀𝑥 𝑥 = 𝑦) | |
2 | nfnf1 2071 | . . 3 ⊢ Ⅎ𝑥Ⅎ𝑥 𝑧 = 𝑦 | |
3 | ax13lem2 2332 | . . . . 5 ⊢ (¬ 𝑥 = 𝑦 → (∃𝑥 𝑧 = 𝑦 → 𝑧 = 𝑦)) | |
4 | ax13lem1 2284 | . . . . 5 ⊢ (¬ 𝑥 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) | |
5 | 3, 4 | syld 47 | . . . 4 ⊢ (¬ 𝑥 = 𝑦 → (∃𝑥 𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) |
6 | df-nf 1750 | . . . 4 ⊢ (Ⅎ𝑥 𝑧 = 𝑦 ↔ (∃𝑥 𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) | |
7 | 5, 6 | sylibr 224 | . . 3 ⊢ (¬ 𝑥 = 𝑦 → Ⅎ𝑥 𝑧 = 𝑦) |
8 | 2, 7 | exlimi 2124 | . 2 ⊢ (∃𝑥 ¬ 𝑥 = 𝑦 → Ⅎ𝑥 𝑧 = 𝑦) |
9 | 1, 8 | sylbir 225 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑧 = 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1521 ∃wex 1744 Ⅎwnf 1748 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-10 2059 ax-12 2087 ax-13 2282 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-ex 1745 df-nf 1750 |
This theorem is referenced by: dveeq2 2334 nfeqf1 2335 sbal1 2488 copsexg 4985 axrepndlem1 9452 axpowndlem2 9458 axpowndlem3 9459 bj-dvelimdv 32959 bj-dvelimdv1 32960 wl-equsb3 33467 wl-sbcom2d-lem1 33472 wl-mo2df 33482 wl-eudf 33484 wl-euequ1f 33486 |
Copyright terms: Public domain | W3C validator |