![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfeqf1 | Structured version Visualization version GIF version |
Description: An equation between setvar is free of any other setvar. (Contributed by Wolf Lammen, 10-Jun-2019.) |
Ref | Expression |
---|---|
nfeqf1 | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑦 = 𝑧) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfeqf2 2442 | . 2 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑧 = 𝑦) | |
2 | equcom 2100 | . . 3 ⊢ (𝑧 = 𝑦 ↔ 𝑦 = 𝑧) | |
3 | 2 | nfbii 1927 | . 2 ⊢ (Ⅎ𝑥 𝑧 = 𝑦 ↔ Ⅎ𝑥 𝑦 = 𝑧) |
4 | 1, 3 | sylib 208 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑦 = 𝑧) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1630 Ⅎwnf 1857 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-10 2168 ax-12 2196 ax-13 2391 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-ex 1854 df-nf 1859 |
This theorem is referenced by: dveeq1 2445 sbal2 2598 nfeud2 2619 nfiotad 6015 wl-mo2df 33665 wl-eudf 33667 |
Copyright terms: Public domain | W3C validator |