![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfeq1 | Structured version Visualization version GIF version |
Description: Hypothesis builder for equality, special case. (Contributed by Mario Carneiro, 10-Oct-2016.) |
Ref | Expression |
---|---|
nfeq1.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfeq1 | ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfeq1.1 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2793 | . 2 ⊢ Ⅎ𝑥𝐵 | |
3 | 1, 2 | nfeq 2805 | 1 ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1523 Ⅎwnf 1748 Ⅎwnfc 2780 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-cleq 2644 df-nfc 2782 |
This theorem is referenced by: euabsn 4293 invdisjrab 4671 disjxun 4683 iunopeqop 5010 opabiotafun 6298 fvmptt 6339 eusvobj2 6683 oprabv 6745 ovmpt2dv2 6836 ov3 6839 dom2lem 8037 pwfseqlem2 9519 fsumf1o 14498 isummulc2 14537 fsum00 14574 isumshft 14615 zprod 14711 fprodf1o 14720 prodss 14721 iserodd 15587 yonedalem4b 16963 gsum2d2lem 18418 gsummptnn0fz 18428 gsummoncoe1 19722 elptr2 21425 ovoliunnul 23321 mbfinf 23477 itg2splitlem 23560 dgrle 24044 disjabrex 29521 disjabrexf 29522 disjunsn 29533 voliune 30420 volfiniune 30421 bnj958 31136 bnj1491 31251 finminlem 32437 poimirlem23 33562 poimirlem28 33567 cdleme43fsv1snlem 36025 ltrniotaval 36186 cdlemksv2 36452 cdlemkuv2 36472 cdlemk36 36518 cdlemkid 36541 cdlemk19x 36548 eq0rabdioph 37657 monotoddzz 37825 cncfiooicclem1 40424 stoweidlem28 40563 stoweidlem48 40583 stoweidlem58 40593 etransclem32 40801 sge0gtfsumgt 40978 voliunsge0lem 41007 |
Copyright terms: Public domain | W3C validator |