![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfel2 | Structured version Visualization version GIF version |
Description: Hypothesis builder for elementhood, special case. (Contributed by Mario Carneiro, 10-Oct-2016.) |
Ref | Expression |
---|---|
nfeq2.1 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfel2 | ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2793 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfeq2.1 | . 2 ⊢ Ⅎ𝑥𝐵 | |
3 | 1, 2 | nfel 2806 | 1 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnf 1748 ∈ wcel 2030 Ⅎwnfc 2780 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-cleq 2644 df-clel 2647 df-nfc 2782 |
This theorem is referenced by: elabgt 3379 opelopabsb 5014 eliunxp 5292 opeliunxp2 5293 tz6.12f 6250 riotaxfrd 6682 0neqopab 6740 opeliunxp2f 7381 cbvixp 7967 boxcutc 7993 ixpiunwdom 8537 rankidb 8701 rankuni2b 8754 acni2 8907 ac6c4 9341 iundom2g 9400 tskuni 9643 reuccats1 13526 gsumcom2 18420 gsummatr01lem4 20512 ptclsg 21466 cnextfvval 21916 prdsdsf 22219 nnindf 29693 bnj1463 31249 ptrest 33538 sdclem1 33669 eqrelf 34161 binomcxplemnotnn0 38872 eliin2f 39601 stoweidlem26 40561 stoweidlem36 40571 stoweidlem46 40581 stoweidlem51 40586 eliunxp2 42437 setrec1 42763 |
Copyright terms: Public domain | W3C validator |