![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfdm | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for domain. (Contributed by NM, 30-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nfrn.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfdm | ⊢ Ⅎ𝑥dom 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dm 5276 | . 2 ⊢ dom 𝐴 = {𝑦 ∣ ∃𝑧 𝑦𝐴𝑧} | |
2 | nfcv 2902 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
3 | nfrn.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
4 | nfcv 2902 | . . . . 5 ⊢ Ⅎ𝑥𝑧 | |
5 | 2, 3, 4 | nfbr 4851 | . . . 4 ⊢ Ⅎ𝑥 𝑦𝐴𝑧 |
6 | 5 | nfex 2301 | . . 3 ⊢ Ⅎ𝑥∃𝑧 𝑦𝐴𝑧 |
7 | 6 | nfab 2907 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ ∃𝑧 𝑦𝐴𝑧} |
8 | 1, 7 | nfcxfr 2900 | 1 ⊢ Ⅎ𝑥dom 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∃wex 1853 {cab 2746 Ⅎwnfc 2889 class class class wbr 4804 dom cdm 5266 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-br 4805 df-dm 5276 |
This theorem is referenced by: nfrn 5523 dmiin 5524 nffn 6148 funimass4f 29746 bnj1398 31409 bnj1491 31432 nosupbnd2 32168 fnlimcnv 40402 fnlimfvre 40409 fnlimabslt 40414 lmbr3 40482 itgsinexplem1 40672 fourierdlem16 40843 fourierdlem21 40848 fourierdlem22 40849 fourierdlem68 40894 fourierdlem80 40906 fourierdlem103 40929 fourierdlem104 40930 issmff 41449 issmfdf 41452 smfpimltmpt 41461 smfpimltxrmpt 41473 smfpreimagtf 41482 smflim 41491 smfpimgtxr 41494 smfpimgtmpt 41495 smfpimgtxrmpt 41498 smflim2 41518 smfpimcc 41520 smfsup 41526 smfsupmpt 41527 smfsupxr 41528 smfinflem 41529 smfinf 41530 smfinfmpt 41531 smflimsup 41540 smfliminf 41543 nfdfat 41716 |
Copyright terms: Public domain | W3C validator |