Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcvf2 Structured version   Visualization version   GIF version

Theorem nfcvf2 2818
 Description: If 𝑥 and 𝑦 are distinct, then 𝑦 is not free in 𝑥. (Contributed by Mario Carneiro, 5-Dec-2016.)
Assertion
Ref Expression
nfcvf2 (¬ ∀𝑥 𝑥 = 𝑦𝑦𝑥)

Proof of Theorem nfcvf2
StepHypRef Expression
1 nfcvf 2817 . 2 (¬ ∀𝑦 𝑦 = 𝑥𝑦𝑥)
21naecoms 2346 1 (¬ ∀𝑥 𝑥 = 𝑦𝑦𝑥)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4  ∀wal 1521  Ⅎwnfc 2780 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-cleq 2644  df-clel 2647  df-nfc 2782 This theorem is referenced by:  dfid3  5054  oprabid  6717  axrepndlem1  9452  axrepndlem2  9453  axrepnd  9454  axunnd  9456  axpowndlem3  9459  axpowndlem4  9460  axpownd  9461  axregndlem2  9463  axinfndlem1  9465  axinfnd  9466  axacndlem4  9470  axacndlem5  9471  axacnd  9472  bj-nfcsym  33011
 Copyright terms: Public domain W3C validator