Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcprod1 Structured version   Visualization version   GIF version

Theorem nfcprod1 14684
 Description: Bound-variable hypothesis builder for product. (Contributed by Scott Fenton, 4-Dec-2017.)
Hypothesis
Ref Expression
nfcprod1.1 𝑘𝐴
Assertion
Ref Expression
nfcprod1 𝑘𝑘𝐴 𝐵
Distinct variable group:   𝐴,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem nfcprod1
Dummy variables 𝑓 𝑚 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-prod 14680 . 2 𝑘𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
2 nfcv 2793 . . . . 5 𝑘
3 nfcprod1.1 . . . . . . 7 𝑘𝐴
4 nfcv 2793 . . . . . . 7 𝑘(ℤ𝑚)
53, 4nfss 3629 . . . . . 6 𝑘 𝐴 ⊆ (ℤ𝑚)
6 nfv 1883 . . . . . . . . 9 𝑘 𝑦 ≠ 0
7 nfcv 2793 . . . . . . . . . . 11 𝑘𝑛
8 nfcv 2793 . . . . . . . . . . 11 𝑘 ·
9 nfmpt1 4780 . . . . . . . . . . 11 𝑘(𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))
107, 8, 9nfseq 12851 . . . . . . . . . 10 𝑘seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1)))
11 nfcv 2793 . . . . . . . . . 10 𝑘
12 nfcv 2793 . . . . . . . . . 10 𝑘𝑦
1310, 11, 12nfbr 4732 . . . . . . . . 9 𝑘seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦
146, 13nfan 1868 . . . . . . . 8 𝑘(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦)
1514nfex 2192 . . . . . . 7 𝑘𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦)
164, 15nfrex 3036 . . . . . 6 𝑘𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦)
17 nfcv 2793 . . . . . . . 8 𝑘𝑚
1817, 8, 9nfseq 12851 . . . . . . 7 𝑘seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1)))
19 nfcv 2793 . . . . . . 7 𝑘𝑥
2018, 11, 19nfbr 4732 . . . . . 6 𝑘seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥
215, 16, 20nf3an 1871 . . . . 5 𝑘(𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥)
222, 21nfrex 3036 . . . 4 𝑘𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥)
23 nfcv 2793 . . . . 5 𝑘
24 nfcv 2793 . . . . . . . 8 𝑘𝑓
25 nfcv 2793 . . . . . . . 8 𝑘(1...𝑚)
2624, 25, 3nff1o 6173 . . . . . . 7 𝑘 𝑓:(1...𝑚)–1-1-onto𝐴
27 nfcv 2793 . . . . . . . . . 10 𝑘1
28 nfcsb1v 3582 . . . . . . . . . . 11 𝑘(𝑓𝑛) / 𝑘𝐵
2923, 28nfmpt 4779 . . . . . . . . . 10 𝑘(𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵)
3027, 8, 29nfseq 12851 . . . . . . . . 9 𝑘seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))
3130, 17nffv 6236 . . . . . . . 8 𝑘(seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)
3231nfeq2 2809 . . . . . . 7 𝑘 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)
3326, 32nfan 1868 . . . . . 6 𝑘(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))
3433nfex 2192 . . . . 5 𝑘𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))
3523, 34nfrex 3036 . . . 4 𝑘𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))
3622, 35nfor 1874 . . 3 𝑘(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))
3736nfiota 5893 . 2 𝑘(℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
381, 37nfcxfr 2791 1 𝑘𝑘𝐴 𝐵
 Colors of variables: wff setvar class Syntax hints:   ∨ wo 382   ∧ wa 383   ∧ w3a 1054   = wceq 1523  ∃wex 1744   ∈ wcel 2030  Ⅎwnfc 2780   ≠ wne 2823  ∃wrex 2942  ⦋csb 3566   ⊆ wss 3607  ifcif 4119   class class class wbr 4685   ↦ cmpt 4762  ℩cio 5887  –1-1-onto→wf1o 5925  ‘cfv 5926  (class class class)co 6690  0cc0 9974  1c1 9975   · cmul 9979  ℕcn 11058  ℤcz 11415  ℤ≥cuz 11725  ...cfz 12364  seqcseq 12841   ⇝ cli 14259  ∏cprod 14679 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-seq 12842  df-prod 14680 This theorem is referenced by:  fprodcn  40150  dvmptfprod  40478  vonicc  41220
 Copyright terms: Public domain W3C validator