![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfcjust | Structured version Visualization version GIF version |
Description: Justification theorem for df-nfc 2782. (Contributed by Mario Carneiro, 13-Oct-2016.) |
Ref | Expression |
---|---|
nfcjust | ⊢ (∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴 ↔ ∀𝑧Ⅎ𝑥 𝑧 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1883 | . . 3 ⊢ Ⅎ𝑥 𝑦 = 𝑧 | |
2 | eleq1 2718 | . . 3 ⊢ (𝑦 = 𝑧 → (𝑦 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) | |
3 | 1, 2 | nfbidf 2130 | . 2 ⊢ (𝑦 = 𝑧 → (Ⅎ𝑥 𝑦 ∈ 𝐴 ↔ Ⅎ𝑥 𝑧 ∈ 𝐴)) |
4 | 3 | cbvalv 2309 | 1 ⊢ (∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴 ↔ ∀𝑧Ⅎ𝑥 𝑧 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∀wal 1521 Ⅎwnf 1748 ∈ wcel 2030 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-an 385 df-ex 1745 df-nf 1750 df-cleq 2644 df-clel 2647 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |