![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfcii | Structured version Visualization version GIF version |
Description: Deduce that a class 𝐴 does not have 𝑥 free in it. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfcii.1 | ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) |
Ref | Expression |
---|---|
nfcii | ⊢ Ⅎ𝑥𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcii.1 | . . 3 ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) | |
2 | 1 | nf5i 2064 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
3 | 2 | nfci 2783 | 1 ⊢ Ⅎ𝑥𝐴 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1521 ∈ wcel 2030 Ⅎwnfc 2780 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-10 2059 |
This theorem depends on definitions: df-bi 197 df-ex 1745 df-nf 1750 df-nfc 2782 |
This theorem is referenced by: bnj1316 31017 bnj1385 31029 bnj1400 31032 bnj1468 31042 bnj1534 31049 bnj1542 31053 bnj1228 31205 bnj1307 31217 bnj1448 31241 bnj1466 31247 bnj1463 31249 bnj1491 31251 bnj1312 31252 bnj1498 31255 bnj1520 31260 bnj1525 31263 bnj1529 31264 bnj1523 31265 |
Copyright terms: Public domain | W3C validator |