![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfci | Structured version Visualization version GIF version |
Description: Deduce that a class 𝐴 does not have 𝑥 free in it. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfci.1 | ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
Ref | Expression |
---|---|
nfci | ⊢ Ⅎ𝑥𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nfc 2782 | . 2 ⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) | |
2 | nfci.1 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 | |
3 | 1, 2 | mpgbir 1766 | 1 ⊢ Ⅎ𝑥𝐴 |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnf 1748 ∈ wcel 2030 Ⅎwnfc 2780 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 |
This theorem depends on definitions: df-bi 197 df-nfc 2782 |
This theorem is referenced by: nfcii 2784 nfcv 2793 nfab1 2795 nfab 2798 fpwrelmap 29636 esumfzf 30259 bj-nfab1 32910 fsumiunss 40125 climsuse 40158 climinff 40161 fnlimfvre 40224 limsupre3uzlem 40285 pimdecfgtioc 41246 pimincfltioc 41247 smfmullem4 41322 smflimsupmpt 41356 |
Copyright terms: Public domain | W3C validator |