MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfccdeq Structured version   Visualization version   GIF version

Theorem nfccdeq 3420
Description: Variation of nfcdeq 3419 for classes. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nfccdeq.1 𝑥𝐴
nfccdeq.2 CondEq(𝑥 = 𝑦𝐴 = 𝐵)
Assertion
Ref Expression
nfccdeq 𝐴 = 𝐵
Distinct variable groups:   𝑥,𝐵   𝑦,𝐴
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑦)

Proof of Theorem nfccdeq
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfccdeq.1 . . . 4 𝑥𝐴
21nfcri 2755 . . 3 𝑥 𝑧𝐴
3 equid 1936 . . . . 5 𝑧 = 𝑧
43cdeqth 3409 . . . 4 CondEq(𝑥 = 𝑦𝑧 = 𝑧)
5 nfccdeq.2 . . . 4 CondEq(𝑥 = 𝑦𝐴 = 𝐵)
64, 5cdeqel 3418 . . 3 CondEq(𝑥 = 𝑦 → (𝑧𝐴𝑧𝐵))
72, 6nfcdeq 3419 . 2 (𝑧𝐴𝑧𝐵)
87eqriv 2618 1 𝐴 = 𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1480  wcel 1987  wnfc 2748  CondEqwcdeq 3405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-cleq 2614  df-clel 2617  df-nfc 2750  df-cdeq 3406
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator