![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfand | Structured version Visualization version GIF version |
Description: If in a context 𝑥 is not free in 𝜓 and 𝜒, it is not free in (𝜓 ∧ 𝜒). (Contributed by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfand.1 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
nfand.2 | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
Ref | Expression |
---|---|
nfand | ⊢ (𝜑 → Ⅎ𝑥(𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-an 385 | . 2 ⊢ ((𝜓 ∧ 𝜒) ↔ ¬ (𝜓 → ¬ 𝜒)) | |
2 | nfand.1 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
3 | nfand.2 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
4 | 3 | nfnd 1825 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝜒) |
5 | 2, 4 | nfimd 1863 | . . 3 ⊢ (𝜑 → Ⅎ𝑥(𝜓 → ¬ 𝜒)) |
6 | 5 | nfnd 1825 | . 2 ⊢ (𝜑 → Ⅎ𝑥 ¬ (𝜓 → ¬ 𝜒)) |
7 | 1, 6 | nfxfrd 1820 | 1 ⊢ (𝜑 → Ⅎ𝑥(𝜓 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 Ⅎwnf 1748 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-ex 1745 df-nf 1750 |
This theorem is referenced by: nf3and 1867 nfan 1868 nfbid 1872 nfeld 2802 nfreud 3141 nfrmod 3142 nfrmo 3144 nfrab 3153 nfifd 4147 nfdisj 4664 dfid3 5054 nfriotad 6659 axrepndlem1 9452 axrepndlem2 9453 axunndlem1 9455 axunnd 9456 axregndlem2 9463 axinfndlem1 9465 axinfnd 9466 axacndlem4 9470 axacndlem5 9471 axacnd 9472 riotasv2d 34561 |
Copyright terms: Public domain | W3C validator |