![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfan1 | Structured version Visualization version GIF version |
Description: A closed form of nfan 1868. (Contributed by Mario Carneiro, 3-Oct-2016.) df-nf 1750 changed. (Revised by Wolf Lammen, 18-Sep-2021.) |
Ref | Expression |
---|---|
nfim1.1 | ⊢ Ⅎ𝑥𝜑 |
nfim1.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfan1 | ⊢ Ⅎ𝑥(𝜑 ∧ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-an 385 | . 2 ⊢ ((𝜑 ∧ 𝜓) ↔ ¬ (𝜑 → ¬ 𝜓)) | |
2 | nfim1.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
3 | nfim1.2 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
4 | nfnt 1822 | . . . . 5 ⊢ (Ⅎ𝑥𝜓 → Ⅎ𝑥 ¬ 𝜓) | |
5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝜓) |
6 | 2, 5 | nfim1 2105 | . . 3 ⊢ Ⅎ𝑥(𝜑 → ¬ 𝜓) |
7 | 6 | nfn 1824 | . 2 ⊢ Ⅎ𝑥 ¬ (𝜑 → ¬ 𝜓) |
8 | 1, 7 | nfxfr 1819 | 1 ⊢ Ⅎ𝑥(𝜑 ∧ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 Ⅎwnf 1748 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-12 2087 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-ex 1745 df-nf 1750 |
This theorem is referenced by: ralcom2 3133 sbcralt 3543 sbcrext 3544 sbcrextOLD 3545 csbiebt 3586 riota5f 6676 axrepndlem1 9452 axrepndlem2 9453 axunnd 9456 axpowndlem2 9458 axpowndlem3 9459 axpowndlem4 9460 axregndlem2 9463 axinfndlem1 9465 axinfnd 9466 axacndlem4 9470 axacndlem5 9471 axacnd 9472 fproddivf 14762 wl-sbcom2d-lem1 33472 wl-mo2df 33482 wl-eudf 33484 wl-mo3t 33488 wl-ax11-lem4 33495 wl-ax11-lem6 33497 |
Copyright terms: Public domain | W3C validator |