![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfae | Structured version Visualization version GIF version |
Description: All variables are effectively bound in an identical variable specifier. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfae | ⊢ Ⅎ𝑧∀𝑥 𝑥 = 𝑦 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbae 2348 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑧∀𝑥 𝑥 = 𝑦) | |
2 | 1 | nf5i 2064 | 1 ⊢ Ⅎ𝑧∀𝑥 𝑥 = 𝑦 |
Colors of variables: wff setvar class |
Syntax hints: ∀wal 1521 Ⅎwnf 1748 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 |
This theorem is referenced by: nfnae 2351 axc16nfALT 2354 dral2 2355 drnf2 2361 sbequ5 2415 sbco3 2445 2ax6elem 2477 sbal 2490 exists1 2590 axi12 2629 axrepnd 9454 axunnd 9456 axpowndlem3 9459 axpownd 9461 axregndlem1 9462 axregnd 9464 axacndlem1 9467 axacndlem2 9468 axacndlem3 9469 axacndlem4 9470 axacndlem5 9471 axacnd 9472 |
Copyright terms: Public domain | W3C validator |