Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfa1-o Structured version   Visualization version   GIF version

Theorem nfa1-o 34519
Description: 𝑥 is not free in 𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
nfa1-o 𝑥𝑥𝜑

Proof of Theorem nfa1-o
StepHypRef Expression
1 hba1-o 34501 . 2 (∀𝑥𝜑 → ∀𝑥𝑥𝜑)
21nf5i 2064 1 𝑥𝑥𝜑
Colors of variables: wff setvar class
Syntax hints:  wal 1521  wnf 1748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-10 2059  ax-c5 34487  ax-c4 34488  ax-c7 34489
This theorem depends on definitions:  df-bi 197  df-ex 1745  df-nf 1750
This theorem is referenced by:  axc11n-16  34542  ax12eq  34545  ax12el  34546  ax12v2-o  34553
  Copyright terms: Public domain W3C validator