![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nesymi | Structured version Visualization version GIF version |
Description: Inference associated with nesym 2988. (Contributed by BJ, 7-Jul-2018.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
Ref | Expression |
---|---|
nesymi.1 | ⊢ 𝐴 ≠ 𝐵 |
Ref | Expression |
---|---|
nesymi | ⊢ ¬ 𝐵 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nesymi.1 | . . 3 ⊢ 𝐴 ≠ 𝐵 | |
2 | 1 | necomi 2986 | . 2 ⊢ 𝐵 ≠ 𝐴 |
3 | 2 | neii 2934 | 1 ⊢ ¬ 𝐵 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1632 ≠ wne 2932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-an 385 df-ex 1854 df-cleq 2753 df-ne 2933 |
This theorem is referenced by: 0nelxp 5300 recgt0ii 11121 xrltnr 12146 nltmnf 12156 xnn0xadd0 12270 setcepi 16939 pmtrprfval 18107 pmtrprfvalrn 18108 cnfldfunALT 19961 zringndrg 20040 vieta1lem2 24265 2lgslem3 25328 2lgslem4 25330 structiedg0val 26110 snstriedgval 26129 rusgrnumwwlkl1 27090 clwwlknon1sn 27248 frgrreggt1 27561 ballotlemi1 30873 sgnnbi 30916 sgnpbi 30917 plymulx0 30933 sltval2 32115 nosgnn0 32117 bj-0nel1 33246 bj-0nelsngl 33265 bj-pr22val 33313 bj-pinftynminfty 33425 finxp0 33539 wepwsolem 38114 refsum2cnlem1 39695 oddprmALTV 42108 spr0nelg 42236 |
Copyright terms: Public domain | W3C validator |