![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nerabdioph | Structured version Visualization version GIF version |
Description: Diophantine set builder for inequality. This not quite trivial theorem touches on something important; Diophantine sets are not closed under negation, but they contain an important subclass that is, namely the recursive sets. With this theorem and De Morgan's laws, all quantifier-free formulae can be negated. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
Ref | Expression |
---|---|
nerabdioph | ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ 𝐴 ≠ 𝐵} ∈ (Dioph‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabdiophlem1 37885 | . . . 4 ⊢ ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) → ∀𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁))𝐴 ∈ ℤ) | |
2 | rabdiophlem1 37885 | . . . 4 ⊢ ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁)) → ∀𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁))𝐵 ∈ ℤ) | |
3 | zre 11593 | . . . . . . 7 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
4 | zre 11593 | . . . . . . 7 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℝ) | |
5 | lttri2 10332 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≠ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) | |
6 | 3, 4, 5 | syl2an 495 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ≠ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) |
7 | 6 | ralimi 3090 | . . . . 5 ⊢ (∀𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁))(𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ∀𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁))(𝐴 ≠ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) |
8 | r19.26 3202 | . . . . 5 ⊢ (∀𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁))(𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ↔ (∀𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁))𝐴 ∈ ℤ ∧ ∀𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁))𝐵 ∈ ℤ)) | |
9 | rabbi 3259 | . . . . 5 ⊢ (∀𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁))(𝐴 ≠ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴)) ↔ {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ 𝐴 ≠ 𝐵} = {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴)}) | |
10 | 7, 8, 9 | 3imtr3i 280 | . . . 4 ⊢ ((∀𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁))𝐴 ∈ ℤ ∧ ∀𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁))𝐵 ∈ ℤ) → {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ 𝐴 ≠ 𝐵} = {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴)}) |
11 | 1, 2, 10 | syl2an 495 | . . 3 ⊢ (((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ 𝐴 ≠ 𝐵} = {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴)}) |
12 | 11 | 3adant1 1125 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ 𝐴 ≠ 𝐵} = {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴)}) |
13 | ltrabdioph 37892 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ 𝐴 < 𝐵} ∈ (Dioph‘𝑁)) | |
14 | ltrabdioph 37892 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ 𝐵 < 𝐴} ∈ (Dioph‘𝑁)) | |
15 | 14 | 3com23 1121 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ 𝐵 < 𝐴} ∈ (Dioph‘𝑁)) |
16 | orrabdioph 37865 | . . 3 ⊢ (({𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ 𝐴 < 𝐵} ∈ (Dioph‘𝑁) ∧ {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ 𝐵 < 𝐴} ∈ (Dioph‘𝑁)) → {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴)} ∈ (Dioph‘𝑁)) | |
17 | 13, 15, 16 | syl2anc 696 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴)} ∈ (Dioph‘𝑁)) |
18 | 12, 17 | eqeltrd 2839 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ 𝐴 ≠ 𝐵} ∈ (Dioph‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∨ wo 382 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 ∀wral 3050 {crab 3054 class class class wbr 4804 ↦ cmpt 4881 ‘cfv 6049 (class class class)co 6814 ↑𝑚 cmap 8025 ℝcr 10147 1c1 10149 < clt 10286 ℕ0cn0 11504 ℤcz 11589 ...cfz 12539 mzPolycmzp 37805 Diophcdioph 37838 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-inf2 8713 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-of 7063 df-om 7232 df-1st 7334 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-1o 7730 df-oadd 7734 df-er 7913 df-map 8027 df-en 8124 df-dom 8125 df-sdom 8126 df-fin 8127 df-card 8975 df-cda 9202 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-nn 11233 df-n0 11505 df-z 11590 df-uz 11900 df-fz 12540 df-hash 13332 df-mzpcl 37806 df-mzp 37807 df-dioph 37839 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |