![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nelrdva | Structured version Visualization version GIF version |
Description: Deduce negative membership from an implication. (Contributed by Thierry Arnoux, 27-Nov-2017.) |
Ref | Expression |
---|---|
nelrdva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ≠ 𝐵) |
Ref | Expression |
---|---|
nelrdva | ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2761 | . 2 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝐴) → 𝐵 = 𝐵) | |
2 | eleq1 2827 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) | |
3 | 2 | anbi2d 742 | . . . . . 6 ⊢ (𝑥 = 𝐵 → ((𝜑 ∧ 𝑥 ∈ 𝐴) ↔ (𝜑 ∧ 𝐵 ∈ 𝐴))) |
4 | neeq1 2994 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝑥 ≠ 𝐵 ↔ 𝐵 ≠ 𝐵)) | |
5 | 3, 4 | imbi12d 333 | . . . . 5 ⊢ (𝑥 = 𝐵 → (((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ≠ 𝐵) ↔ ((𝜑 ∧ 𝐵 ∈ 𝐴) → 𝐵 ≠ 𝐵))) |
6 | nelrdva.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ≠ 𝐵) | |
7 | 5, 6 | vtoclg 3406 | . . . 4 ⊢ (𝐵 ∈ 𝐴 → ((𝜑 ∧ 𝐵 ∈ 𝐴) → 𝐵 ≠ 𝐵)) |
8 | 7 | anabsi7 895 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝐴) → 𝐵 ≠ 𝐵) |
9 | 8 | neneqd 2937 | . 2 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵 = 𝐵) |
10 | 1, 9 | pm2.65da 601 | 1 ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-12 2196 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-ne 2933 df-v 3342 |
This theorem is referenced by: ustfilxp 22237 metustfbas 22583 fourierdlem72 40916 |
Copyright terms: Public domain | W3C validator |