MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nelpri Structured version   Visualization version   GIF version

Theorem nelpri 4347
Description: If an element doesn't match the items in an unordered pair, it is not in the unordered pair. (Contributed by David A. Wheeler, 10-May-2015.)
Hypotheses
Ref Expression
nelpri.1 𝐴𝐵
nelpri.2 𝐴𝐶
Assertion
Ref Expression
nelpri ¬ 𝐴 ∈ {𝐵, 𝐶}

Proof of Theorem nelpri
StepHypRef Expression
1 nelpri.1 . 2 𝐴𝐵
2 nelpri.2 . 2 𝐴𝐶
3 neanior 3025 . . 3 ((𝐴𝐵𝐴𝐶) ↔ ¬ (𝐴 = 𝐵𝐴 = 𝐶))
4 elpri 4343 . . . 4 (𝐴 ∈ {𝐵, 𝐶} → (𝐴 = 𝐵𝐴 = 𝐶))
54con3i 150 . . 3 (¬ (𝐴 = 𝐵𝐴 = 𝐶) → ¬ 𝐴 ∈ {𝐵, 𝐶})
63, 5sylbi 207 . 2 ((𝐴𝐵𝐴𝐶) → ¬ 𝐴 ∈ {𝐵, 𝐶})
71, 2, 6mp2an 710 1 ¬ 𝐴 ∈ {𝐵, 𝐶}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 382  wa 383   = wceq 1632  wcel 2140  wne 2933  {cpr 4324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-v 3343  df-un 3721  df-sn 4323  df-pr 4325
This theorem is referenced by:  prneli  4348  ex-dif  27613  ex-in  27615  ex-pss  27618  ex-res  27631  ex-hash  27643
  Copyright terms: Public domain W3C validator